Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathol ; 262(3): 362-376, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38229586

RESUMO

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous malignancies that arise from complex cellular interactions within the tissue microenvironment. Here, we sought to decipher tumor-derived signals from the surrounding microenvironment by applying digital spatial profiling (DSP) to hormone-secreting and non-functional GEP-NETs. By combining this approach with in vitro studies of human-derived organoids, we demonstrated the convergence of cell autonomous immune and pro-inflammatory proteins that suggests their role in neuroendocrine differentiation and tumorigenesis. DSP was used to evaluate the expression of 40 neural- and immune-related proteins in surgically resected duodenal and pancreatic NETs (n = 20) primarily consisting of gastrinomas (18/20). A total of 279 regions of interest were examined between tumors, adjacent normal and abnormal-appearing epithelium, and the surrounding stroma. The results were stratified by tissue type and multiple endocrine neoplasia I (MEN1) status, whereas protein expression was validated by immunohistochemistry (IHC). A tumor immune cell autonomous inflammatory signature was further evaluated by IHC and RNAscope, while functional pro-inflammatory signaling was confirmed using patient-derived duodenal organoids. Gastrin-secreting and non-functional pancreatic NETs showed a higher abundance of immune cell markers and immune infiltrate compared with duodenal gastrinomas. Compared with non-MEN1 tumors, MEN1 gastrinomas and preneoplastic lesions showed strong immune exclusion and upregulated expression of neuropathological proteins. Despite a paucity of immune cells, duodenal gastrinomas expressed the pro-inflammatory and pro-neural factor IL-17B. Treatment of human duodenal organoids with IL-17B activated NF-κB and STAT3 signaling and induced the expression of neuroendocrine markers. In conclusion, multiplexed spatial protein analysis identified tissue-specific neuro-immune signatures in GEP-NETs. Duodenal gastrinomas are characterized by an immunologically cold microenvironment that permits cellular reprogramming and neoplastic transformation of the preneoplastic epithelium. Moreover, duodenal gastrinomas cell autonomously express immune and pro-inflammatory factors, including tumor-derived IL-17B, that stimulate the neuroendocrine phenotype. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Duodenais , Gastrinoma , Neoplasias Intestinais , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendócrinos/patologia , Gastrinoma/genética , Gastrinoma/metabolismo , Gastrinoma/patologia , Neuroimunomodulação , Interleucina-17 , Neoplasias Duodenais/genética , Neoplasias Pancreáticas/patologia , Microambiente Tumoral
2.
J Biomed Opt ; 28(9): 096004, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37711357

RESUMO

Significance: Lineage tracing using fluorescent reporters is a common tool for monitoring the expression of genes and transcription factors in stem cell populations and their progeny. The zinc-binding protein 89 (ZBP-89/Zfp148 mouse gene) is a transcription factor that plays a role in gastrointestinal (GI) stem cell maintenance and cellular differentiation and has been linked to the progression of colon cancer. While lineage tracing is a useful tool, it is commonly performed with high-magnification microscopy on a small field of view within tissue sections, thereby limiting the ability to resolve reporter expression at the organ level. Furthermore, this technique requires extensive tissue processing, which is time consuming and requires euthanizing the animal. Further knowledge could be elucidated by measuring the expression of fluorescent reporters across entire organs with minimal tissue processing. Aim: We present the application of wide-field fluorescence imaging for whole-organ lineage tracing of an inducible Zfp148-tdTomato-expressing transgenic mouse line to assess the expression of ZBP-89/Zfp148 in the GI tract. Approach: We measured tdTomato fluorescence in ex vivo organs at time points between 24 h and 6 months post-induction. Fluctuations in tdTomato expression were validated by fluorescence microscopy of tissue sections. Results: Quantification of the wide field-of-view images showed a statistically significant increase in fluorescent signal across the GI tract between transgenic mice and littermate controls. The results also showed a gradient of decreasing reporter expression from proximal to distal intestine, suggesting a higher abundance of ZBP-89 expressing stem cells, or higher expression of ZBP-89 within the stem cells, in the proximal intestine. Conclusions: We demonstrate that wide-field fluorescence imaging is a valuable tool for monitoring whole-organ expression of fluorescent reporters. This technique could potentially be applied in vivo for longitudinal assessment of a single animal, further enhancing our ability to resolve rare stem cell lineages spatially and temporally.


Assuntos
Neoplasias do Colo , Intestinos , Animais , Camundongos , Intestinos/diagnóstico por imagem , Corantes , Camundongos Transgênicos , Microscopia de Fluorescência , Imagem Óptica , Proteínas de Ligação a DNA , Fatores de Transcrição
3.
Cancers (Basel) ; 15(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37190167

RESUMO

MB is a common childhood malignancy of the central nervous system, with significant morbidity and mortality. Among the four molecular subgroups, MYC-amplified Group 3 MB is the most aggressive type and has the worst prognosis due to therapy resistance. The present study aimed to investigate the role of activated STAT3 in promoting MB pathogenesis and chemoresistance via inducing the cancer hallmark MYC oncogene. Targeting STAT3 function either by inducible genetic knockdown (KD) or with a clinically relevant small molecule inhibitor reduced tumorigenic attributes in MB cells, including survival, proliferation, anti-apoptosis, migration, stemness and expression of MYC and its targets. STAT3 inhibition attenuates MYC expression by affecting recruitment of histone acetyltransferase p300, thereby reducing enrichment of H3K27 acetylation in the MYC promoter. Concomitantly, it also decreases the occupancy of the bromodomain containing protein-4 (BRD4) and phosphoSer2-RNA Pol II (pSer2-RNAPol II) on MYC, resulting in reduced transcription. Importantly, inhibition of STAT3 signaling significantly attenuated MB tumor growth in subcutaneous and intracranial orthotopic xenografts, increased the sensitivity of MB tumors to cisplatin, and improved the survival of mice bearing high-risk MYC-amplified tumors. Together, the results of our study demonstrate that targeting STAT3 may be a promising adjuvant therapy and chemo-sensitizer to augment treatment efficacy, reduce therapy-related toxicity and improve quality of life in high-risk pediatric patients.

4.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37219942

RESUMO

The incidence of early-onset colorectal cancer (EO-CRC) is rising and is poorly understood. Lifestyle factors and altered genetic background possibly contribute. Here, we performed targeted exon sequencing of archived leukocyte DNA from 158 EO-CRC participants, which identified a missense mutation at p.A98V within the proximal DNA binding domain of Hepatic Nuclear Factor 1 α (HNF1AA98V, rs1800574). The HNF1AA98V exhibited reduced DNA binding. To test function, the HNF1A variant was introduced into the mouse genome by CRISPR/Cas9, and the mice were placed on either a high-fat diet (HFD) or high-sugar diet (HSD). Only 1% of the HNF1A mutant mice developed polyps on normal chow; however, 19% and 3% developed polyps on the HFD and HSD, respectively. RNA-Seq revealed an increase in metabolic, immune, lipid biogenesis genes, and Wnt/ß-catenin signaling components in the HNF1A mutant relative to the WT mice. Mouse polyps and colon cancers from participants carrying the HNF1AA98V variant exhibited reduced CDX2 and elevated ß-catenin proteins. We further demonstrated decreased occupancy of HNF1AA98V at the Cdx2 locus and reduced Cdx2 promoter activity compared with WT HNF1A. Collectively, our study shows that the HNF1AA98V variant plus a HFD promotes the formation of colonic polyps by activating ß-catenin via decreasing Cdx2 expression.


Assuntos
Neoplasias do Colo , beta Catenina , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Comunicação Celular , Neoplasias do Colo/metabolismo , Dieta Hiperlipídica , Via de Sinalização Wnt/genética
5.
Nucleic Acids Res ; 50(6): 3394-3412, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35286386

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), one of the most aggressive types of cancer, is characterized by aberrant activity of oncogenic KRAS. A nuclease-hypersensitive GC-rich region in KRAS promoter can fold into a four-stranded DNA secondary structure called G-quadruplex (G4), known to regulate KRAS expression. However, the factors that regulate stable G4 formation in the genome and KRAS expression in PDAC are largely unknown. Here, we show that APE1 (apurinic/apyrimidinic endonuclease 1), a multifunctional DNA repair enzyme, is a G4-binding protein, and loss of APE1 abrogates the formation of stable G4 structures in cells. Recombinant APE1 binds to KRAS promoter G4 structure with high affinity and promotes G4 folding in vitro. Knockdown of APE1 reduces MAZ transcription factor loading onto the KRAS promoter, thus reducing KRAS expression in PDAC cells. Moreover, downregulation of APE1 sensitizes PDAC cells to chemotherapeutic drugs in vitro and in vivo. We also demonstrate that PDAC patients' tissue samples have elevated levels of both APE1 and G4 DNA. Our findings unravel a critical role of APE1 in regulating stable G4 formation and KRAS expression in PDAC and highlight G4 structures as genomic features with potential application as a novel prognostic marker and therapeutic target in PDAC.


Assuntos
Carcinoma Ductal Pancreático , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Quadruplex G , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Carcinoma Ductal Pancreático/genética , DNA/química , Endonucleases/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas
6.
Cancer Lett ; 520: 201-212, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271103

RESUMO

Medulloblastoma (MB) is a malignant pediatric brain tumor with a poor prognosis. Post-surgical radiation and cisplatin-based chemotherapy have been a mainstay of treatment, which often leads to substantial neurocognitive impairments and morbidity, highlighting the need for a novel therapeutic target to enhance the sensitivity of MB tumors to cytotoxic therapies. We performed a comprehensive study using a cohort of 71 MB patients' samples and pediatric MB cell lines and found that MB tumors have elevated levels of nucleosome remodeling FACT (FAcilitates Chromatin Transcription) complex and DNA repair enzyme AP-endonuclease1 (APE1). FACT interacts with APE1 and facilitates recruitment and acetylation of APE1 to promote repair of radiation and cisplatin-induced DNA damage. Further, levels of FACT and acetylated APE1 both are correlate strongly with MB patients' survival. Targeting FACT complex with CBL0137 inhibits DNA repair and alters expression of a subset of genes, and significantly improves the potency of cisplatin and radiation in vitro and in MB xenograft. Notably, combination of CBL0137 and cisplatin significantly suppressed MB tumor growth in an intracranial orthotopic xenograft model. We conclude that FACT complex promotes chemo-radiation resistance in MB, and FACT inhibitor CBL0137 can be used as a chemo-radiation sensitizer to augment treatment efficacy and reduce therapy-related toxicity in high-risk pediatric patients.


Assuntos
Cisplatino/administração & dosagem , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Meduloblastoma/tratamento farmacológico , Fatores de Elongação da Transcrição/genética , Adolescente , Adulto , Animais , Carbazóis/administração & dosagem , Carbazóis/efeitos adversos , Criança , Pré-Escolar , Cisplatino/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Xenoenxertos , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Chaperonas de Histonas/genética , Humanos , Masculino , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/radioterapia , Camundongos , Fatores de Elongação da Transcrição/antagonistas & inibidores , Adulto Jovem
7.
Heliyon ; 7(4): e06756, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33948507

RESUMO

BACKGROUND: Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) plays a critical role in DNA base excision repair (BER) pathway and has been reported to be overexpressed in multiple cancers. Previously, we have shown that histone chaperone FACT complex (Facilitates Chromatin Transcription, a heterodimer of SSRP1 and SPT16 proteins) facilitates the chromatin access and DNA repair function of APE1, and their expression levels are correlated with promoting drug resistance in cancer. FACT inhibitor has been introduced in phase I and II clinical trials for chemosensitization of advanced solid cancers. However, the expression profile and prognostic significance of APE1 and FACT complex in bladder cancer remains largely unknown. METHODS: Retrospectively, 69 bladder cancer samples were retrieved and submitted for immunohistochemical staining of APE1 and SSRP1. Expression profile including cytoplasmic and nuclear staining of APE1 and expression level of SSRP1 was examined and semi-quantified to render a H-score. The prognostic significance of APE1 and SSRP1 was evaluated by Kaplan-Meier survival analysis in our cohort and R2 database. RESULTS: APE1 expression is elevated in bladder cancer compared to normal adjacent tissues. Compared with low grade tumors, high grade tumors show a shift in the staining pattern including higher intensity and positive cytoplasmic staining. Carcinoma in situ has a similar staining pattern to high grade tumors. APE1 and SSRP1 staining intensity increases as tumor progresses with stage. There is a correlation between APE1 and SSRP1 staining in invasive bladder cancer (Spearman r = 0.5466, p < 0.0001). The increased expression of APE1 and SSRP1 is associated with poor survival in Kaplan-Meier analysis in our cohort and in R2-TCGA bladder cancer database. CONCLUSIONS: The expression levels of APE1 and SSRP1 are significantly elevated in bladder cancer as compared to normal adjacent tissues. APE1 correlates with SSRP1 expression in high grade tumors. Overexpression of APE1 and SSRP1 is associated with poor survival in bladder cancer. This suggests the usage of FACT inhibitor curaxins in muscle invasive bladder cancer to target FACT complex and APE1 to improve chemosensitization after further validation.

8.
Mol Cancer Ther ; 19(1): 258-269, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575655

RESUMO

Fluorouracil (5-FU) remains a first-line chemotherapeutic agent for colorectal cancer. However, a subset of colorectal cancer patients who have defective mismatch-repair (dMMR) pathway show resistance to 5-FU. Here, we demonstrate that the efficacy of 5-FU in dMMR colorectal cancer cells is largely dependent on the DNA base excision repair (BER) pathway. Downregulation of APE1, a key enzyme in the BER pathway, decreases IC50 of 5-FU in dMMR colorectal cancer cells by 10-fold. Furthermore, we discover that the facilitates chromatin transcription (FACT) complex facilitates 5-FU repair in DNA via promoting the recruitment and acetylation of APE1 (AcAPE1) to damage sites in chromatin. Downregulation of FACT affects 5-FU damage repair in DNA and sensitizes dMMR colorectal cancer cells to 5-FU. Targeting the FACT complex with curaxins, a class of small molecules, significantly improves the 5-FU efficacy in dMMR colorectal cancer in vitro (∼50-fold decrease in IC50) and in vivo xenograft models. We show that primary tumor tissues of colorectal cancer patients have higher FACT and AcAPE1 levels compared with adjacent nontumor tissues. Additionally, there is a strong clinical correlation of FACT and AcAPE1 levels with colorectal cancer patients' response to chemotherapy. Together, our study demonstrates that targeting FACT with curaxins is a promising strategy to overcome 5-FU resistance in dMMR colorectal cancer patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carbazóis/farmacologia , Neoplasias do Colo/tratamento farmacológico , Proteínas de Ligação a DNA/antagonistas & inibidores , Fluoruracila/farmacologia , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Fatores de Elongação da Transcrição/antagonistas & inibidores , Animais , Carbazóis/administração & dosagem , Cromatina/metabolismo , Neoplasias do Colo/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/administração & dosagem , Células HCT116 , Células HEK293 , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas de Histonas/antagonistas & inibidores , Chaperonas de Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Fatores de Elongação da Transcrição/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Biochem Biophys Res Commun ; 520(2): 250-256, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31594641

RESUMO

Medulloblastoma (MB) is a highly aggressive, malignant brain tumor in children with poor prognosis. Cyclin-dependent kinase 9 (CDK9), a serine-threonine kinase, is widely implicated in the control of basal gene expression by phosphorylating Serine 2 (Ser2) of the heptad repeat in the RNA Polymerase II (RNA Pol II) C-terminal domain (CTD). Although CDK9 plays a pathogenic role in various cancers, its function in MB remains unknown. Here, we show that CDK9 is highly expressed in MB tumors and increased CDK9 expression is correlated with high risk MB patients. CDK9 expression along with phospho-Ser2 RNA Pol II (pRNA Pol II ser2) and bromodomain-binding protein 4 (BRD4), which recruits CDK9, were elevated in multiple MB cell lines and in MB tumors originated spontaneously from Ptch1+/-p53-/- mice. Inhibition of CDK9 with LDC067 suppressed MB cell growth, reduced pRNA Pol II ser2 level and expression of oncogenic markers, including MYC. Moreover, LDC067 treatment synergistically sensitizes MB cells to chemotherapeutic agent cisplatin. Further, LDC067 in combination with BRD4 inhibitor decreased MB cells growth, delayed cell migration and attenuated pRNA Pol II ser2 occupancy to CCND1 and BCL2 gene promoters as revealed by chromatin immunoprecipitation assay (ChIP). Together, these findings highlight the importance of CDK9 in MB pathogenesis and suggest that it may serve as a promising therapeutic target for the treatment of MB.


Assuntos
Neoplasias Cerebelares/tratamento farmacológico , Quinase 9 Dependente de Ciclina/metabolismo , Meduloblastoma/tratamento farmacológico , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Cisplatino/administração & dosagem , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos Mutantes , Terapia de Alvo Molecular , Neoplasias Experimentais , Pirimidinas/administração & dosagem , RNA Polimerase II/metabolismo , Serina/metabolismo , Sulfonamidas/administração & dosagem , Fatores de Transcrição/metabolismo
10.
Cell Signal ; 39: 18-31, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28751279

RESUMO

The human apurinic/apyrimidinic endonuclease 1 (APE1) is a pleiotropic nuclear protein with roles in DNA base excision repair pathway as well as in regulation of transcription. Recently, the presence of extracellular plasma APE1 was reported in endotoxemic rats. However, the biological significance and the extracellular function of APE1 remain unclear. In this study, we found that monocytes secrete APE1 upon inflammatory challenges. Challenging the monocytic cells with extracellular APE1 resulted in the increased expression and secretion of the pro-inflammatory cytokine IL-6. Additionally, the extracellular APE1 treatment activated the transcription factor NF-κB, followed by its increased occupancy at the IL-6 promoter, resulting in the induction of IL-6 expression. APE1-induced IL-6 further served to elicit autocrine and paracrine cellular responses. Moreover, the extracellular IL-6 promoted the secretion of APE1, thus indicating a functional feedforward loop in this pathway. Furthermore, we show that APE1 is secreted through extracellular vesicles formation via endosomal sorting complex required for transport (ESCRT)-dependent pathway. Together, our study demonstrates a novel role of extracellular APE1 in IL-6-dependent cellular responses.


Assuntos
Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação da Expressão Gênica , Interleucina-6/genética , Monócitos/metabolismo , NF-kappa B/metabolismo , Compostos de Anilina/farmacologia , Animais , Comunicação Autócrina/efeitos dos fármacos , Compostos de Benzilideno/farmacologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vesículas Extracelulares/metabolismo , Células HCT116 , Humanos , Camundongos , NF-kappa B/genética , Comunicação Parácrina/efeitos dos fármacos , Cultura Primária de Células , Células RAW 264.7 , Células THP-1
11.
Mol Cell Biol ; 37(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27994014

RESUMO

Apurinic/apyrimidinic (AP) sites, the most frequently formed DNA lesions in the genome, inhibit transcription and block replication. The primary enzyme that repairs AP sites in mammalian cells is the AP endonuclease (APE1), which functions through the base excision repair (BER) pathway. Although the mechanism by which APE1 repairs AP sites in vitro has been extensively investigated, it is largely unknown how APE1 repairs AP sites in cells. Here, we show that APE1 is acetylated (AcAPE1) after binding to the AP sites in chromatin and that AcAPE1 is exclusively present on chromatin throughout the cell cycle. Positive charges of acetylable lysine residues in the N-terminal domain of APE1 are essential for chromatin association. Acetylation-mediated neutralization of the positive charges of the lysine residues in the N-terminal domain of APE1 induces a conformational change; this in turn enhances the AP endonuclease activity of APE1. In the absence of APE1 acetylation, cells accumulated AP sites in the genome and showed higher sensitivity to DNA-damaging agents. Thus, mammalian cells, unlike Saccharomyces cerevisiae or Escherichia coli cells, require acetylation of APE1 for the efficient repair of AP sites and base damage in the genome. Our study reveals that APE1 acetylation is an integral part of the BER pathway for maintaining genomic integrity.


Assuntos
Cromatina/metabolismo , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Acetilação , Biocatálise , Ciclo Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Genoma , Humanos , Lisina/metabolismo , Modelos Biológicos , Ligação Proteica , Conformação Proteica
12.
Oncotarget ; 7(46): 75197-75209, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27655688

RESUMO

Apurinic/apyrimidinic (AP) sites are frequently generated in the genome by spontaneous depurination/depyrimidination or after removal of oxidized/modified bases by DNA glycosylases during the base excision repair (BER) pathway. Unrepaired AP sites are mutagenic and block DNA replication and transcription. The primary enzyme to repair AP sites in mammalian cells is AP endonuclease (APE1), which plays a key role in this repair pathway. Although overexpression of APE1 in diverse cancer types and its association with chemotherapeutic resistance are well documented, alteration of posttranslational modification of APE1 and modulation of its functions during tumorigenesis are largely unknown. Here, we show that both classical histone deacetylase HDAC1 and NAD+-dependent deacetylase SIRT1 regulate acetylation level of APE1 and acetylation of APE1 enhances its AP-endonuclease activity both in vitro and in cells. Modulation of APE1 acetylation level in cells alters AP site repair capacity of the cell extracts in vitro. Primary tumor tissues of diverse cancer types have higher level of acetylated APE1 (AcAPE1) compared to adjacent non-tumor tissue and exhibit enhanced AP site repair capacity. Importantly, in the absence of APE1 acetylation, cells accumulate AP sites in the genome and show increased sensitivity to DNA damaging agents. Together, our study demonstrates that elevation of acetylation level of APE1 in tumor could be a novel mechanism by which cells handle the elevated levels of DNA damages in response to genotoxic stress and maintain sustained proliferation.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Acetilação , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Histona Desacetilase 1/metabolismo , Humanos , NAD/metabolismo , Neoplasias/patologia , Ligação Proteica , Sirtuína 1/metabolismo
13.
Oncol Rep ; 35(5): 2681-90, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26935394

RESUMO

Interleukin-24 (IL-24) displays cancer-specific apoptosis-inducing properties in a broad spectrum of human tumors without harmful effects on normal cells. The human IL-24 protein is secreted as a glycosylated protein and functions as a pro-Th1 cytokine and a potent antiangiogenic molecule. However, the function of secreted recombinant human IL-24 (srhIL-24) protein in esophageal squamous cell carcinoma (ESCC) cells has not been studied. In the present study, we prepared a stable site-specific-integrated cell line, Flp-InTMCHO/IL-24 (FCHO/IL-24), which secreted rhIL-24 at a higher level than three random-integrated cell lines. In vitro, we identified that the purified srhIL-24 inhibited proliferation and induced the apoptosis of ESCC Eca-109 cells and activated STAT3, which was related with the IL-20 receptors. In vivo, the tumorigenicity of Eca-109 cells was significantly inhibited by s.c. injection of FCHO/IL-24 cells. Decreased tumor microvessel density and an increased number of TUNEL-positive tumor cells were associated with tumor growth inhibition, indicating the presence of antiangiogenic activity and induction of apoptotic activity. In summary, the present study demonstrated that srhIL-24 induced growth inhibition and apoptosis in ESCC Eca-109 cells in vitro and in vivo, which may be mediated by the receptor pathway.


Assuntos
Interleucinas/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Células CHO , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Proliferação de Células , Cricetinae , Cricetulus , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Feminino , Células HEK293 , Humanos , Interleucinas/farmacologia , Interleucinas/fisiologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Receptores de Interleucina/metabolismo , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
14.
Oncol Rep ; 33(1): 193-200, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25371158

RESUMO

Based on the three-dimensional modeling structure of human interleukin-24 (hIL-24) and its most likely active position predicted by solvent accessibility and apparent electrostatic properties, a novel hIL-24 peptide M1 was created by computer-guided molecular design. The cytotoxicity and cell selectivity of M1 were examined in three human carcinoma cell lines and one normal human embryo lung fibroblast cell line (HEL). MTT assay showed that M1 induced growth arrest in two IL-20 receptor complex-positive cancer cell lines (the esophageal squamous cell carcinoma cell line Eca-109 and the melanoma cell line A375), and antibodies against IL-24 or IL-20 receptor complexes significantly neutralized the inhibitory activity. Moreover, M1 had almost no cytotoxicity on the lung cancer A549 cell line, which lacks a full complement of the IL-20 receptor complexes, or on HEL cells that express the IL-20 receptor complexes. These findings demonstrate that M1 could act as an excellent candidate for the induction of growth arrest on receptor complex-positive cancer cells. In summary, the M1 peptide may represent a novel anticancer agent for esophageal squamous cell carcinoma therapy due to its cancer cell selectivity and its relatively low cytotoxicity to normal cells.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Interleucinas/farmacologia , Antineoplásicos/síntese química , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho Assistido por Computador , Desenho de Fármacos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Concentração Inibidora 50 , Interleucinas/síntese química , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...